Arbitrary Polynomial Chaos for Uncertainty Propagation of Correlated Random Variables in Dynamic Systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion

We discuss the arbitrary polynomial chaos (aPC), which has been subject of research in a few recent theoretical papers. Like all polynomial chaos expansion techniques, aPC approximates the dependence of simulation model output on model parameters by expansion in an orthogonal polynomial basis. The aPC generalizes chaos expansion techniques towards arbitrary distributions with arbitrary probabil...

متن کامل

Uncertainty Propagation in Puff-based Dispersion Models Using Polynomial Chaos

Atmospheric dispersion is a complex nonlinear physical process with numerous uncertainties in model parameters, inputs, source parameters, initial and boundary conditions. Accurate propagation of these uncertainties through the dispersion models is crucial for a reliable prediction of the probability distribution of the states and assessment of risk. A simple three-dimensional Gaussian puff-bas...

متن کامل

Nonlinear Propagation of Orbit Uncertainty Using Non-Intrusive Polynomial Chaos

This paper demonstrates the use of polynomial chaos expansions (PCEs) for the nonlinear, non-Gaussian propagation of orbit state uncertainty. Using linear expansions in tensor-products of univariate orthogonal polynomial bases, PCEs approximate the stochastic solution of the ordinary differential equation describing the propagated orbit, and include information on covariance, higher moments, an...

متن کامل

Uncertainty Evolution In Stochastic Dynamic Models Using Polynomial Chaos

We present a new approach to describe the evolution of uncertainty in linear dynamic models with parametric and initial condition uncertainties, and driven by additive white Gaussian forcing. This is based on the polynomial chaos (PC) series expansion of second order random processes, which has been used in several domains to solve stochastic systems with parametric and initial condition uncert...

متن کامل

Efficient Uncertainty Quantification with Polynomial Chaos for Implicit Stiff Systems

The polynomial chaos method has been widely adopted as a computationally feasible approach for uncertainty quantification. Most studies to date have focused on non-stiff systems. When stiff systems are considered, implicit numerical integration requires the solution of a nonlinear system of equations at every time step. Using the Galerkin approach, the size of the system state increases from n ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IFAC-PapersOnLine

سال: 2017

ISSN: 2405-8963

DOI: 10.1016/j.ifacol.2017.08.954